UVA Research Computing

Research Computing

Creating innovative solutions for researchers

/tag/containers

  • Cloud Solutions

    // Run your Cloud computing is ideal for running flexible, scalable applications on demand, in periodic bursts, or for fixed periods of time. UVA Research Computing works alongside researchers to design and run research applications and datasets into Amazon Web Services, the leader among public cloud vendors. This means that server, storage, and database needs do not have to be estimated or purchased beforehand – they can be scaled larger and smaller with your needs, or programmed to scale dynamically with your application. Service Oriented Architecture A key advantage of the cloud is that for many services you do not need to build or maintain the servers that support the service – you simply use it.
  • Microservices

    Microservice architecture is an approach to designing and running applications. Such applications are typically run within containers, made popular in the last few years by Docker. Containers are portable, efficient, and disposable, and contain code and any dependencies in a single package. Containerized microservices typically run a single process, rather than an entire stack within the same computing environment. This allows portions of your application to be easily replaced or scaled as needed. Research Computing runs microservices in an orchestration environment named DCOS (Distributed Cloud Operating System), based on Apache Mesos and Apache Marathon. DCOS makes the deployment and management of many containers easy and scalable.
  • Computing Environments at UVA

    Rivanna The primary vehicle for high-performance computing since 2014 has been the Rivanna cluster. Rivanna is a heterogenous system consisting of approximately 186 x 20-core nodes with 128GB of RAM each, 25 x 28-core nodes with 256 GB of RAM, and 152 x 40-core nodes with 384GB each. Five “big memory” nodes offer 1TB of RAM with 16 cores each. All nodes are supported by a high-performance FDR Infiniband network using Mellanox hardware and some have EDR Infiniband. A number of nodes supporting specialty hardware are included; there are 8 nodes with NVIDIA K80 GPGPUs, 4 nodes with NVIDIA V100 GPGPUs, 1 node with NVIDIA V100, and 2 nodes with NVIDIA RTX2080TI boards.
  • Computing Systems

    UVA Research Computing can help you find the right system for your computational workloads. From supercomputers to HIPAA secure systems to cloud-based deployments with advanced infrastructure, various systems are available to researchers. Are you submitting a grant proposal and need standard information about UVA research computing environments? Get it here. High Performance Computing - Rivanna A traditional high performance cluster with job scheduler, large file system, modules, and MPI processing. Get Started on Rivanna
    Secure Computing for Sensitive Data - Ivy A multi-platform, HIPAA-compliant system for secure data that includes dedicated virtual machines (Linux and Windows), JupyterLab Notebooks, and Apache Spark.

  • Rivanna HPC Software

    Overview Research Computing at UVA offers a variety of standard software packages for all Rivanna users. We also install requested software based on the needs of the high-performance computing (HPC) community as a whole. Software used by a single group should be installed by that group’s members, ideally on leased storage controlled by the group. Departments with a set of widely-used software packages may install them to the lsp_apps space. The Research Computing group also provides limited assistance for individual installations. For help installing research software on your PC, please contact Research Software Support at res-consult@virginia.edu. Software Modules and Containers Software on Rivanna is accessed via environment modules or containers.
  • Keras on Rivanna

    Description Keras is a high-level neural networks application programming interface (API), written in Python and capable of running on top of TensorFlow, CNTK, or Theano. On Rivanna, we provide TensorFlow containers that include the Keras API. Since version 1.12.0, TensorFlow contains its own Keras API implementation as described on the TensorFlow website. Using Keras with TensorFlow containers Like TensorFlow itself, Python code that utlizes the Keras package can be run interactively as Jupyter Notebooks, in interactive shell jobs, or non-interctively as SLURM batch jobs. Rivanna provides several nodes with graphics processing units (GPUs) that should be used when running Keras code.
  • Software Containers

    Overview Containers bundle an application, the libraries and other executables it may need, and even the data used with the application into portable, self-contained files called images. Containers simplify installation and management of software with complex dependencies and can also be used to package workflows. Singularity is a container application targeted to multi-user, high-performance computing systems. It interoperates well with SLURM and with the Lmod modules system. Singularity can be used to create and run its own containers, or it can import Docker containers. Creating Singularity Containers To create your own image from scratch, you must have root privileges on some computer running Linux (any version).
  • BART Web

    BART (Binding Analysis for Regulation of Transcription) Web Working with researchers in the Zang Lab in the Center for Public Health Genomics (CPHG), RC helped launch BARTweb, an interactive web-based tool for users to analyze their Genelist or ChIP-seq datasets. BARTweb is a containerized Flask front-end (written in Python) that ingests files and submits them to a more robust Python-based genomics pipeline running on Rivanna, UVA’s high performance computing cluster (HPC). This architecture – of a public web application that uses a supercomputer to process data – is a new model for UVA, and one that eases the learning curve for researchers who may not have access to an HPC system or the expertise to run a BART pipeline in the command-line.
  • LOLAweb

    The past few years have seen an explosion of interest in understanding the role of regulatory DNA. This interest has driven large-scale production of functional genomics data resources and analytical methods. One popular analysis is to test for enrichment of overlaps between a query set of genomic regions and a database of region sets. In this way, annotations from external data sources can be easily connected to new genomic data. SOM Research Computing is working with faculty in the UVA Center for Public Health Genomics to implement LOLAweb, an online tool for performing genomic locus overlap annotations and analyses. This project, written in the statistical programming language R, allows users to specify region set data in BED format for automated enrichment analysis.