/tag/kubernetes

  • Microservice Deployments

    Kubernetes is a container orchestrator for both short-running (such as workflow/pipeline stages) jobs and long-running (such as web and database servers) services. Containerized applications running in the UVARC Kubernetes cluster are visible to UVA Research networks (and therefore from Rivanna, Skyline, etc.). Web applications can be made visible to the UVA campus or the public Internet. Kubernetes Research Computing runs microservices in a Kubernetes cluster that automates the deployment of many containers, making their management easy and scalable. This cluster will eventually consist of several dozen instances, >2000 cores and >2TB of memory allocated to running containerized services. It will also have over 300TB of cluster storage and can attach to both project and standard storage.
  • Container Services

    – Container-based architecture, also known as “microservices,” is an approach to designing and running applications as a distributed set of components or layers. Such applications are typically run within containers, made popular in the last few years by Docker. Containers are portable, efficient, reusable, and contain code and any dependencies in a single package. Containerized services typically run a single process, rather than an entire stack within the same environment. This allows developers to replace, scale, or troubleshoot portions of their entire application at a time. General Availability (GA) of Kubernetes - Research Computing now manages microservice orchestration with Kubernetes, the open-source tool from Google.
  • Computing Environments at UVA

    Research Computing (UVA-RC) serves as the principal center for computational resources and associated expertise at the University of Virginia (UVA). Each year UVA-RC provides services to over 433 active PIs that sponsor more than 2463 unique users from 14 different schools/organizations at the University, maintaining a breadth of systems to support the computational and data intensive research of UVA’s researchers. High Performance Computing  UVA-RC’s High Performance Computing (HPC) systems are designed with high speed networks, high performance storage, GPUs, and large amounts of memory in order to support modern compute and memory intensive programs. UVA-RC’s HPC systems are comprised of over 614 compute nodes, with a total of 20476 X86 64-bit compute cores and 240 TB total RAM.