UVA Research Computing

Research Computing

Creating innovative solutions for researchers

Deep Learning for Neuroscience - Live Seminar: September 22, 2020

MathWorks engineers will offer a free live webinar on September 22th from 2:00 to 3:30 Eastern time.

REGISTER HERE if you’d like to attend - there’s no cost and the presenter will be a MathWorks engineer with an advanced degree - not a marketing or sales person.

Overview

Deep learning can achieve humanlike accuracy at tasks such as naming objects in a scene or recognizing optimal paths in an environment. Sometimes it can even exceed human performance, recognizing non-obvious patterns in image or signal data.

In this new neuroscience seminar, we’ll illustrate the fundamentals of deep learning in MATLAB. Using an age-labeled BIDS dataset from the OpenNeuro repository, we’ll train a deep network to accurately classify the age range of normalized human MRI brain images, not obviously discernable by human inspection.

Highlights

Along the way, participants will learn many aspects of the deep learning workflow:

  • Load and manage large sets of images
  • Import pre-trained models such as ResNet
  • Set up transfer learning via network modification
  • Get to network training quickly with apps for preprocessing and augmenting training image data
  • Configure network training parameters
  • Validation of convergence during deep model training
  • Interoperability with open source deep learning frameworks (i.e.,TensorFlow-Keras, Caffe, PyTorch, etc.,) using ONNX
  • Accelerate algorithms on NVIDIA® GPUs, cloud, and datacenter resources without specialized programming.